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Remarks on Copolymer Sequence Distributions* 

GARY VER STRATE, Esso Research and Engineering Co., 
Linden, New Jersey 07036 

Synopsis 

Distribution functions for the unit X in copolymers of the type 

A + XX + w(A),JXX),,w 

AX + XX + -(AX),,,(XX)“N etc., and 

AX + XA + XX + -(AX),(XX),(XA)I(AX),-- etc. 

are given. These functions have been used to calculate the expected degree of crys- 
tallinity using the Flory theory of copolymer crystallinity. The calculations indicate 
that differences can be expected between polymers prepared from XA and XX on the one 
hand and A and X on the other when the kinetics constants of the polymer-forming reac- 
tions are identical. In addition, it has been shown that the Flory results carry over to 
the terpolymer case with the propagation probability given in its terpolymerization form. 
The addition of more than one comonomer can lead to increased or decreased crystallin- 
ity with a given constant melting point, depending on whether the noncrystallisable 
monomers tend to alternate or “block” with one another. 

INTRODUCTION 

This discussion is concerned with several interrelated problems which 
arise in the calculation of sequence distributions of a particular unit in a 
copolymer or terpolymer. As an example of the use of the distribut,ions 
obtained, the Flory theory‘ of copolymer crystallinity has been reworked 
to incorporate the situations described; however, the distributions so ob- 
tained could be used in other applications (e.g., interpretation of spectro- 
scopic data). 

In particular, expressions for the distribution of X units obtained in a 
copolymerization of XY with A or AX are derived. For the latter, two 
cases are considered, one where the AX unit enters the chain only as AX, 
not XA; and the other case permitting the XA unit to enter either way. 
This latter case amounts to a terpolymerization. Several terpolymer dis- 
tributions are then discussed. The effect of the addition of two monomers, 
A and B, to a total concentration XA + XA = C is compared to the addi- 
tion of a single comonomer A to the same concentration C. 

* Presented in part at the 1970 Middle Atlantic Regional Meeting of the American 
Chemical Society, University of Delaware, April 1970. 
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Some of these distributions have practical application in the interpre- 
tation of sequence distributions of ethylene-a-olefin copolymers and ter- 
polymers which are currently commercially available. 

The purpose of performing these calculations is that kinetics analysis of 
the polymerization yields only the constants for addition of the more com- 
plicated XX and AX units, whereas it is the X and A unit distributions 
which are more fundamentally related to the properties of the materials. 

CALCULATION 

Case I 
Given the propagation probabilities of an XA unit with an XX unit 

(terminal model, AX always adds XA), what is the frequency distribu- 
tion for X, sequences? 

If the rates of the four fundamental growth reactions are expressed 
t h ~ s , ~ . ~ t  

-x-x* + x-x 
-X-X* + X-A k12[M1*] [Mz] 

mX-A* + X-X k,i[M,*][M1] 

-X-A* + X-A k22[M2*][M2] 

kll [Ml*] [Ml] 

(1) 

where the * symbolizes an active chain end, letting 

it is found that the propagation probabilities for the system are 

The probability of observing sequences of one type of unit (e.g., X-X) 
of n units in length is 

P(X-X), = Pll-yl - Pl1). (4) 

We also have the relationship 

where f is the ratio of monomer 1 to 2 in the copolymer. 

t See these two references for a general review of the copolymer sequence distribu- 
tion case. 
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Now, considering the distribution of X units, it is apparent that each 
-(X-X), sequence will be lengthened by one X unit due to the pres- 
ence of an X unit on the XA monomer: 

-X-A-(X-X) ,-X-A- 

Thus, the probability of observing even-numbered -Xn- sequences is 
zero while that for observing sequences of 3, 5,  7, . . . (272 + 1) units be- 
comes that for observing the 1,2,3, . . . n length sequences of (X-X) units. 
Thus, 

P(X,,+l) = Pnn-'(l - PII) number frequency (6) 

(2n + l)Pun-1(1 - Pn)2 
(3 - P11) 

W(X2n+1) = weight frequency (7) 

The distribution of A and X units along the chain no doubt infiuences 
the polymer properties over the range from perfect alternation to  block 
copolymers. As an example of how the above factors affect the relation- 
ships of kinetic parameters to properties, consider Flory's theory' of co- 
polymer crystallinity. 

Florl ' s  theory considers the crystallization process to proceed by the 
selective crystallization of the longest sequences first, etc., with a surface 
energy associated with the chain emerging from the end (c-axis of the 
crystallite) . By following his derivation, one obtains expressions for melt- 
ing points, degree of crystallinity, minimum crystallizable sequence length, 
etc., in terms of the propagation probability for crystallizable units (e.g., 
X units). In  order to compare the predictions of his theory with the ki- 
netics data from a A-X + X-X polymerization, his relationships must 
be recast in terms of the A-X + X-X propagation probabilities. (See 
Appendix for a summary of notation.) 

Then, since 
Woa=even = 0, the expressions for the probability of a unit being a crystal- 
lizable unit followed in sequence by at least (6 - 1) crystallizable units 
must be rewritten as terms over WOODD only. Note that relation (7) of 
this paper must be multiplied by the mole fraction X units to correspond 
to Flory's W,. Thus: 

The theory carries over directly until his relation (7). 

2 ( 2 j  - 26) * W+l 
p2s+2 = j = a + 1  (2 j  + 1) 

(2j - 26 - 1) 
P 2 & 3  = 2 * w2fl-1 

j = a + 1  (2j + 1) 

where the TV2+1 refer to sequences of (2j + 1) X units, W2s 0. The 
first term of P e l  is W2,1/(26 + l ) ,  and the remaining terms of aPn&l, 
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bP2&+, cPza+3 cancel if a = 1, b = 2, G = 1. Thus Flory's eq. (8) remains 
valid. 

Flory's eq. (9) carries over thus: 

We26+1 = (26 + 1)D-1e-(26+1)0 [(I - e-')~]. (9) 

This quantity is the equilibrium concentration of sequences of the par- 
ticular length in the melt. Now formulating Flory's eq. (ll), 

X,(26 + l ) V O & l  - XcP,,a-1(26 + 1) 
w 0 2 6 + l  = m - 

(10) 
(26+ 1)V0z6+1 2 P1?-'(26 f 1) 

6 = 1  6 =  1 

(26 + 1)(1 - Pld2 
WO2€+1=($j p11 (3 - Pll) 

Here, X, represents the mole fraction X units in sqeuences of 2 or longer. 
The mole fraction X in sequences of 2 and longer is determined as follows: 

X-X yields 2X 

A-X yields X. 

If the mole fraction of X-X is X,, then 

(12) 
x, + 1 total mole fraction X = ~ 2 

Subtracting the fraction of the total polymer of X units between A units 
which is equal to  

m XzaP22 5 c (i - l)P&-' (1 - P 2 2 ) 2  = - 
2 i = 2  2 

(14) 
x, + 1 - (1 - X,)P22 

2 x, = 

Setting WO2st1 = We2st1, it is found that the intersection occurs at 

1 + 21n XCD 
- [+ + In [XI + In (3 - Pll) 

26 + In PU 

and substituting eq. (11) in eq. (S), 

since 

P e 2 & + 1  = D-l exp-(26 + (l)6, 
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we obtain the equivalent of Flory's eq. (14) for the melting condition: 

(19) xc - (' - 'ld2 (1 - P11)P6n > D-l exp-(26 + l)6. 
P (3 - P11) 

Taking the limit 6 * a, since this is true as T,  is approached, 

In P11 > -26 (20) 

6 -1nP11 AHp 
m -  2 --(&-&I R 

1 -Rln P1l 1 
T T,O 2AHp . - 

Therefore the melting point relationship is changed to a form with P11* 

For the degree of crystallinity, 
P'''ll or AHp -P 2AHp, depending on how you want to think about it. 

w, = 2 (W02j+1 - We,,+,) (24) 
6*-1 . 

6 = ~ =integer 2 

3 - Pll 
w, = 

6*-1 
6 =  =integer 

- D-l [l - e-e]2e-ee-26e(26 + 1) (25) 

w, = 2 (Ap' - B(e-")')(26 + 1) (26) 
6*-1 

2 6 =  -- =integer 

1 (1 - 26*) + P6*11(26* + 1) a*+ 1 

W ,  = A [p,, 
(1 - P1d2 

where 

x, (1 - P1d2 
P 3 - P11 ' A = -  

B = ~ - 1 [ 1  - e-']2e-'. 

Case I1 

The next more difficult situation to consider is one in which the XA 
unit can enter in both "normal" and inverted forms. This then becomes 
a somewhat degenerated terpolymerization; degenerated because the 



2514 G. VER STRATE 

concentrations of two components, i.e., AX and XA, are equal throughout 
the polymerization. There are three different growing units, however. 

-xx* + xx 
-XX* + XA 

-XX* + AX 

-XA* + XX 

-XA* + XA 

-XA* + AX 
-AX* + XX 

-AX* + XA 

-AX* + AX 

The expressions for the distributions of XX sequences have been given4 
as follows: The total (XX), sequences that are of length n in the following 
arrangemenis are proportional to the Pfj t :  

-AX(XX),XA- P131 = n1p13p33'-lp31 

-AX(XX),XA- P132 = nlp13~33'- '~3~ 

NXA(XX),XA- P232 = n~p23~33'-~p32 
(29) 

-XA(XX),AX- P231 = ~ ~ P z ~ P ~ ' - ' P ~ I  

where the pi i  are propagation probabilities and ni represents the total num- 
ber of i units in the polymer. 

These units contain (X), sequences as follows: 

P131, (2n + 1) units 

P132, (2n + 2 )  units 

P232, (272 + 1) units 

p 2 3 1 ,  (2n) units 

Therefore the fraction of X units in sequences of a given length from the 
Pijt are, 

for length 2i, 

(31) 
2inzp23~33'- 'pi1 

N 
NP2'231 = 

for length 2i  + 1, 

(32) 
(2i  + 1) In2p23p32 + n1p13p31lp~-~33 

N NP2'"232 + NP2'131 = 



COPOLYMER SEQUENCE DISTRIBUTIONS 2515 

for length 2i + 2, 

From eq. (33) we obtain 

where sequences of 1 and 2X units between AX'S are neglected, and N 
refers to the normalized PlSijh as follows: 

m 

N = c 2n2p2,p3lipi-'33 + (rz2p23p32 + n lp~p31) (2 i  + 1)pi-53 
i= 1 

m + C 2inlp13pi-23m2 (35) 
2=2  

a2p23(2p31 + 3p.32 - 1)321)33) + nlpl3 

Expressions (31) + (34) and (32) give the fractions of X units in sequences 
of (2n) and (2% + 1)  units, respectively. 

As an example of the use of these functions, consider again Flory's CO- 

polymerization theory. Relationships through (10) in Flory' remain 
unchanged, and eq. (11) is replaced by: 

The Xc refers to X in units of 2 and longer, and 

Q = n?p23p31 + n1p131)32p-133 

R = mp23p32 + nlp13p33. 

This fraction X, can be obtained by the methods of eq. (13) above or by 
recognizing that XA units will not contribute to lengthening XX se- 
quences only when they follow XA units or AX units. The fraction of the 
total polymer that XA units represent is 

n2p22 + nlp12 

n.1 + n2 + n3' 

nlpll + n1p12, 

n.1 + n2 + n3 
Similarly for AX units, 
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(38) 
1 + x, - [Xzpzz + 2XlPlZ + XlPllI 

2 
... x, = 

Equating eq. (37) with Flory's expression for Wae yields the minimum 
crystallizable sequence length, 6* : 

(39) 

Substituting eq. (37) in Flory's eq. (7) yields expressions for Pa" of the 
form 

P a 0  = kp61233 (40) 

where k contains Xc, the propagation probabilities, etc., but not 6. 
For the melting point condition, 

(41) 
1 

kp8/233 > - exp(-68). 
D 

In the limit 6 --+ w , the same result is obtained as eq. (22), with P11 re- 

For the degree of crystallinity, using the odd and even limits appro- 

Wc = 2 [2iQ + (2i + 1)R]P33i-1 - C[2i + (2i + l)e-e]e-2'; (42) 

placed by p33. 

priately, 

a* 

with C = D-l[l - e-e]2, 

(22[6e*(1 - Z )  
C + R [260* (1 - P33) + (1 + P3dI P3P*-'- ___ (1 - Z)Z 

+ z]26e*-1 + 2"/"26,*(1 - 2)  + (1 + z)]zao*-l) (43) 

where z = e--28, e in 6*, = even, and o in 

Case 111 

= odd. 

For purposes of comparison with cases I and 11, consider the case of 
XX + A. Equation (9) is preserved while eq. (11) becomes 

WOZS = ("> pll 6P116(1 - P1d2 

2x2, whereX, = -. 
1 + x22 
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The P1l has the same meaning as in case I, with A replacing AX. 
The melting point relation remains the same as in eq. (22). 
The minimum crystallizable sequence length becomes 

6* = In [2CP11/(l - Pll)2X,]/[ln PI] + 281 

where c = D-' [ l  - exp (-el2. 
The degree of crystallinity is given by 

(45) 

(47) 
[6*(1 - z)z6*-1 + Z6*]  

(1 - z)2 
W ,  = X,[6*(1 - Pll)Pl:*-l + P"] - 2c2 

where z = exp (-28). 

Case IV 

Finally, a straight terpolymerization case is considered, where the unit 
We may adopt relations (29) from a previous of interest is monomer 3. 

section. These lead to relations for 

where P'(X,), is proportional to fractions of monomer 3 which occur in 
sequences of lengthj, and X, = X3. 

It is noted that p32 + pal = 1 - p33. Also, 

is equal to the number of monomer 1 sequences becoming monomer 3 se- 
quences plus the number of monomer 2 sequences becoming monomer 3 
sequences, divided by the number of monomer 3 sequences becoming other 
sequences. This must be unity for high molecular weight polymers. 
Thus, 

is the normalized function. 
the Wao of Flory's paper is given by 

Considering again the degree of crystallinity, 

x c  

P 3 3  
W60 = 6 __ (1 - P33)2P336.  

Thus, all of the relations of his paper remain unchanged. The answers 
depend only on the mole fraction and propagation probability of the crystal- 
lizable monomer. All questions as to the effects of adding a third monomer 
are directly interpretable in terms of the effects on X, and P 3 3 .  
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RESULTS 

Numerical values have been generated for the distribution functions 
and the expected degrees of crystallinity for various values of the param- 
eters. 

A comparison of the distribution functions is made in Figure 1, while 
the relation between the mole fraction X-X and X, is given in Figure 2. 

Degrees of crystallinity have been calculated for cases I, 11, and I11 for 
the values of the parameters indicated in Table I. Typical results are 

TABLE I 
Case I, Case 111, and Normal X + A Copolymera 

Mole Fraction 
ITe, cal/- T 2 ,  a H p ,  cal/- crystallizable 

mole units “K mole nn* T,”K monomer 

4000 415 1000 0.1 240 0.75 
2700 0.55 

1. 400 0.95 
- - 

k33 k33 ksz ku &Case I1 same as above, except XI = XZ; - - - - = 20, 100, 1; - = -- = 1; 
kai k32 k21 k n  

kzz kii 
kz3 kia 
_ - _ -  - - 0.05, 1. 

presented in Figures 3 through 5. 

results are presented in mole fractions. 
Some typical results for case IV are presented in Table 11. All of the 

DISCUSSION 

Cases I, 11, I11 
Questions which can be answered by a consideration of the data for cases 

I, I1 and I11 are: 
Is there any significant difference in the shape of the distribution or the 

“degree of crystallinity” caused by adding the unit X in pairs? Here we 
compare the normal (A + X) with case 111. 

Is there any significant difference between the normal and cases I and 
I1 when the polymers are compared at the same total concentration of X? 

In order to avoid repetitious plotting of the data, the crystallinity re- 
sults are presented as a function of the quantity X,. For the normal and 
case I11 polymers, this includes all X units; while for cases I and 11, those 
X units which are in sequences (of 1 or 2 units) and which include no con- 
tribution from XX (added as XX) are excluded. Thus, for comparisons 
at  constant total X for these latter cases, some interpolation must be done. 

With regard to the first question, it is apparent from Figure 1, plots 1 
and 5, that identical kinetic constants need not yield distributions of the 
same shape. For this particular example where the reactivity ratio prod- 
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Fig. 1. Distribution functions for the unit. (1) Normal: mole fraction X = 0.9; 
rlrz = 1; X, = 0.9; P = 0.9. ( 2 )  Case I: mole fraction X = 0.915; rIrz = 1; X, = 
0.9; mole fraction XX = 0.83 = P .  (3) Case I: mole fraction X = 0.9; r,r% = 1; 
X ,  = 0.88; mole fract,ion XX = 0.8 = P. (4) Case 11: mole fraction X = 0.9; all 
rij = 1; X, = 0.88; mole fract,ion XX = 0.8 = P. (5) Case 111: mole fraction X = 
0.9; rlr2 = 1 ; X ,  = 0.9; mole fract,ion XX = 0.818 = P. 

m x 

Fig. 2. Relationship of X ,  to mole fraction X. (1) X + A Copolymer: all rlr*. 
(2)  Case I: r1rz = 1. (3) Case I: rlr2 = 0.1. (4) Case 11: all rij = 1. (5) Case 11: 
r12 = 1, r13 = 20, rZ1 = 1, rzS = 20, rS1 = 0.01, ra2 = 0.01. 
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xc 

Fig. 3. Degree of crystallinity and composition: c, = 2700 cal/mole, T," = 415"K, 
AH# = 1000 cal/mole, T = 240°K. (1) A + X Copolymer: r1r2 = 1. (2) A + X 
Copolymer: r1r2 = 0.1. (3) Case I: r1r2 = 1. (4) Case 11: all rij = 1. (5) Case I: 
rlrz = 0.55. (6) Case 111: r1r2 = 1. (7) Case 111: r1rz = 0.1. 

ucts are unity, the polymer formed by the addition of XX tends to have 
more longer sequences, a t  the same concentration of X, than does a poly- 
mer formed from A + X. A similar statement can be made about case 
I1 versus the normal if the comparison is made at  constant X, (plot 2); 
however, a t  constant total X (plot 3), the normal tends toward the larger 
fraction in longer sequences. 

These differences bring about changes in the expected degree of crystal- 
linity. For the particular set of parameters of Figure 3, A + XX poly- 
mers can be either more or less crystalline than A + X polymers for a 
given set of kinetics parameters. This can be seen by comparing curves 
1, 6 and 2, 7. For the higher reactivity ratio product (rlrz = 1) the A + 
XX polymer is more crystalline, but as the product is lowered, this polymer 
should decrease in crystallinity faster. The per cent difference becomes 
larger as the degree of crystallinity is lowered. 

A comparison with cases I and I1 is somewhat more complex because of 
the contribution of X from the AX monomer. If the comparison is made 
at  constant X,, these cases are even more crystallinite than case 111; 
however, if the comparison is made at  constant total X, the normal ap- 
pears much more like the AX + XX polymers. Conversion of X, to X 
by use of Figure 2 permits this comparison. The intercepts on curve 1, 
Figure 3, at X, values of 0.85 and 0.90 correspond to 0.88 and 0.805 mole 
fraction X in the AX and XX polymers when the reactivity ratio product 
is unity. As shown by the intercepts on curves 3 and 4, the case I poly- 
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mer is expected to be somewhat less crystalline and the case I1 polymer, 
somewhat more crystalline, than the normal. 

Thus, it would appear that the sequence distribution of A + X poly- 
mers and AX + XX polymers with the same kinetic constants for mono- 
mer addition (equal to 1 for the reactivity ratio product) are similar enough 
so that one can expect the samples to behave similarly if compared at the 
same concentration of X. 

The data presented in Figures 4 and 5 is reasonably self-explanatory and 
is offered to show that the effects persist over the whole temperature range 
and in the minimum crystallizable sequence length. 

Case IV 

Since the equations in this case degenerated to those for the normal co- 
polymer case with the propagation probability redefined, the discussion is 
here confined to some observations as to how this probability can be modi- 
fied. 

In  the copolymer case, the propagation probability can be written solely 
in terms of the polymer composition and the reactivity ratio product. 
For the terpolymer case: this is not so. Individual values for the re- 
activity ratios must be specified. If the reactivity ratios are unity, the 
propagation probability becomes equal to the mole fraction of the unit in 
the polymer, and the results are the same as those for a random copolymer 
of equal mole fraction crystallizable monomer. 

Rather than consider many special cases of limited general interest here, 
those interested can use the relationships of Rabinovitch4 to generate the 
appropriate feed ratios and polymer compositions, to give the propagation 
probabilities. Flory's results then carry over directly. As an example, 
consider the case where comonomers 1 and 2 are added to monomer 3 
with a given set of kinetics constants, in comparison to the case where 
only monomer 1 is added to monomer 3 with the kinetics constants equal, 
where possible. 

If all the ri j  = 1, the copolymer and terpolymer have the same Xt and 
propagation probability in the polymer. If the rI2 = rZl are permitted to 
differ from unity, however, it is found that either more or less of the crystal- 
lizable monomer must be in the polymer to get the same propagation prob- 
ability. In  particular, if cases A, C are considered, it is seen that for 
~ I Z  = ~ Z I  2 1 (the XI, Xz units prefer to alternate) less of the crystallizable 
monomer must be added in the copolymer case to get the same propaga- 
tion probability, and vice versa. 

These data are presented in tabular form in Table 11. 

Thus, W e  can vary, with T, constant. 

CONCLUSIONS 

Distribution functions and expressions for degrees of crystallinity in the 
Flory' sense have been presented for particular copolymers and terpoly- 
mers. Particular numerical examples have been given to demonstrate the 
results of the calculations. 
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30 
T'K 

Fig. 4. Degree of crystallinity and temperature. (1) A + X Copolymer: X = X, = 
0.85; r1rz = 1; T, = 366. (2) Case I: X ,  = 0.853; rIr2 = 0.5; T, = 360. (3) Case 
11: X, = 0.844; rij = 1; T, = 371. 

9 .o 

Fig. 5. Minimum crystallizable sequence length. (Same as Figure 3, except T = 
280'K). (1) A + X Copolymer: rlr2 = 1. ( 2 )  A + X Copolymer: rlr2 = 0.1. (3) 
Case I Copolymer: rlrz = 1. (4) Case I1 Copolymer: rij = 1. (5) Case I11 Copolymer: 
rlr2 = 1. 
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It appears that the detailed nature of the process of addition of the 
units of interest to the polymer chain must be considered both in the evalu- 
ation of the distribution functions and of the physical properties that can 
result. 

I n  addition, terpolymerization should give considerable added flexibility 
over copolymerization with regard to properties that can be influenced by 
the sequence distribution of a particular monomer. 

APPENDIX 

Flory Nomenclature and Crystallinity Relationships for X + A 
Copolymer. 

X = mole fraction crystallizable unit 
AHfi = heat of fusion/mole crystallizable units 
u, = excess free energy associated with a therminal crystallite unit 
Tmo = melting point of perfect crystalline homopolymer degrees Kelvin 

R = gasconstant 
Wao = product of the mole fraction crystallizable units and the fraction 

D = exp (--2u,/RT) 
p 
6" 

W ,  

of these units in sequences of length 6 

= propagation probability for crystallizable monomer 
= minimum crystallizable sequence length 

= mole fraction crystalline material 
X - e  = - (1 - p)2pa*{p(l - p ) - ~  - e (1 - e-')-2 + 6*[(1 - p)-1 - 
P 

(1 - e-')-l]) 
= probability that a site in the melt is an X unit and that it is SUC- 

ceeded in its chain by at  least 6 - 1 X units 

= (111 (DX/P)  + 2 In [(I - p)/(1 - exp(-e>>l)/(e + In PI 

Pa 
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